MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Mark Scheme: Teachers' version	Syllabus	Paper	
			IGCSE – October/November 2011	0620	31	
1	(a) (i) lithi	um oxide / strontium oxide		[1]	
	(i	i) sulf	fur dioxide / nitrogen dioxide		[1]	
	(ii	i) alu	minium oxide		[1]	
	(iv	,	bon monoxide :ept: correct formulae		[1]	
	b n re h	itroger eactior	ssil) fuel containing sulfur / volcanoes n dioxide n of nitrogen and oxygen nperatures / in car engine		[1] [1] [1] [1]	
	(c) (,	ontium oxide c ept: aluminium oxide		[1]	
	(i		e correct formula nd: charges on ions		[1]	
		6x a	and 2o around oxygen ore: electrons around Li		[1]	
2	(a) (dec	iste gases) from animals caying vegetation / anaerobic decay c ept: decomposition of organic material / natural gas		[1] [1]	
	(i	i) car wat	bon dioxide er		[1] [1]	
	b a p (I re c c	 b) photosynthesis removes carbon dioxide from the atmosphere both respiration and combustion produce carbon dioxide any two of the following: plants photosynthesis changes carbon dioxide into carbohydrates (burning) of fossil fuels / named fuel / petrol / alkanes respiration by living organisms to obtain energy from carbon–containing compounds comment that the balance between these processes determines the percen dioxide 				

	Page 3			Mark Scheme: Teachers' version		Syllabus	Paper
				IGCSE – October/Nove	ember 2011	0620	31
3	(a)	(i)	baux	te			[1]
	 (ii) lowers melting point better conductor / reduces amount of energy needed / reduces economic / makes process viable / conserves energy 					[1] s cost / more [1]	
	(iii) aluminium more reactive than copper / aluminium higher in reactivity series hydrogen not aluminium formed at cathode					es [1] [1]	
	(b) $Al^{3^{+}} + 3e \rightarrow Al$ $2O^{2^{-}} \rightarrow O_2 + 4e$ note: not balanced = 1 oxygen reacts with carbon (anode) to form carbon dioxide / C + O ₂ \rightarrow CO ₂ note: if mark(s) for an electrode reaction are not awarded then allow aluminium ion electrons / are reduced oxide ion loses electrons / is oxidised max 4					[1] [2] ium ions accept [1] [1]	
	(c)	(i)	prote	ctive oxide layer			[1]
		(ii)	alurr strer	nium low density / light nium is a good conductor gth / prevent sagging / allo because it is strong	ws greater separa	tion of pylons /	[1] [1] core made of [1]
4	(a)	con	icentr	ward reaction equals rate of ba itions do not change / macrosc mounts		ain constant (with	[1] time) [1]
	(b)	(i)	incre reac Vr >	ion 2			[1] [1] [1]
		(ii)	sam reac Vr =	ion 1			[1] [1] [1]
		(iii)	Vp >	ion 3	gas as an alternativ	ve to volume	[1] [1] [1]

Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
		IGCSE – October/November 2011	0620	31	
5	(a) (i)	rate of reaction decreases / gradient decreases because <u>concentration</u> of bromine decreases reaction stops because all bromine is used up		[1] [1] [1]	
	(ii)	 (ii) initial rate greater / gradient greater because bigger surface area / more particles of iron exposed or: 			
		final mass the same because mass of bromine is the same so the same mass of iron is used			
	(iii)	 (iii) increase / decrease / change rate of stirring / not stirred measure new rate / compare results 			
	(b) (i)	Fe to Fe ²⁺ because oxidation is electron loss / increase in oxidati	on number	[1] [1]	
	(ii)	(ii) Fe			
	Fe ²	 (c) add sodium hydroxide solution / ammonia(aq) Fe²⁺ <u>green precipitate</u> Fe³⁺ <u>brown precipitate</u> 			
6	(a) (i)	(a) (i) correct structural formula of ethanoic acid allow: –OH not: –COOH		[1]	
	(ii)	correct structural formula of ethanol allow: –OH		[1]	
	(b) (i)	ethyl ethanoate		[1]	
	(ii)	-OC ₆ H ₄ COOCH ₂ CH ₂ O- correct ester linkage correct repeat units continuation accept: boxes if it is clear what the box represents		[1] [1] [1]	
	(iii)	 (iii) any two from: long time to decay landfill sites visual pollution / litter danger to animals poisonous gases when burnt accept: any correct suggestion 			

	Page 5		Mark Scheme: Teachers' version	Syllabus F	Paper
			IGCSE – October/November 2011	0620	31
	 (c) synthetic – only two monomers protein – many different monomers or: 				[1] [1]
	pro nyl	protein has 1 C=O and 1N–H nylon has 2 C=O / 2N–H or:			[1] [1]
	syr	nthetic	- one monomer is a dicarboxylic acid and the othe Il monomers are amino acids	r is a diamine	[1] [1]
7	(a) (i)		Group 1 metal ept: LiOH		[1]
	(ii)		$(DH)_2 \rightarrow CuO + H_2O$ e: products only = 1		[2]
	(iii)	reac	tivity of metals / metals have different reactivities		[1]
	(b) (i)		oxide, nitrogen dioxide, oxygen e: two correct = 1		[2]
	(ii)		$O_3 \rightarrow 2KNO_2 + O_2$: unbalanced = 1, correct word equation = 1		[2]
	(c) calculation: M_r for NaHCO ₃ = 84g; M_r for Na ₂ O = 62g; M_r for NaOH = 4 M_r for Na ₂ CO ₃ = 106g		g		
	(i)	num	ber of moles of NaHCO ₃ used = $3.36/84 = 0.04$		[1]
	(ii)		sidue is Na ₂ O, number of moles of Na ₂ O = $2.12/62$ 034 / 0.03		
			sidue is NaOH, number of moles of NaOH = 2.12/4 053 / 0.05	0	
			side is Na ₂ CO ₃ , number of moles of Na ₂ CO ₃ = 2.12/ e: two correct = 1	106 =0.02 all three corr	rect [2]
	(iii)		ation 3 e ratio 2:1 agrees with equation		[1] [1]